
www.incedoinc.com

Whitepaper

From Reactive to Proactive:
Incedo’s Playbook for
Pre-Scaling APIs

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/
https://www.incedoinc.com/

Performance optimization and API Scaling

www.incedoinc.com

At Incedo, we worked with one of our enterprise clients to modernize their real-time security-intelligence
API. Anticipating a substantial increase in data volumes, we proactively migrated the API service from
Flask to FastAPI framework, which is a modern, high-performance Python web framework that handles
requests more efficiently while keeping the entire infrastructure and API contracts unchanged. These
behind-the-scenes changes preserved compatibility for existing clients and required no additional
hardware.

The result: a roughly 40% reduction in typical response times, materially improved tail latency on heavy
queries, and greater throughput — delivering faster, more reliable service to end users with no extra
infrastructure cost.

System Infrastructure

Resources Specification

Characteristic API Server
Relational
Database

Server

NoSQL
Database

CPU Cores

Memory (GB)

Temporary Storage

Read Operations/ Second

Write Operations/Second

2

4

500 MB

N/A

N/A

4

16

N/A

N/A

N/A

N/A

N/A

N/A

1,000

350

Made with

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

www.incedoinc.com

The Flask framework processes incoming requests in a synchronous manner (one request at a time for
each worker). In practical terms, this meant each request had to wait for its turn. For example, if a request
needed to wait for a slow database query, the worker handling that request was tied up, and other
requests had to wait behind it. Under heavy loads with many requests at the same time, this caused
queues and longer wait times.

Additionally, Flask added some processing overhead for every request. Each request involves parsing
input, running the business logic, and formatting the output. When traffic is light, this overhead is small,
but under heavy load it becomes noticeable. Together, these factors created performance bottlenecks
underload:

 Sequential processing: Each worker handled one request at a time, so a slow operation blocked
 others.

 Request overhead: The framework’s own processing for each request added extra latency when
 scaled up.

 Limited concurrency: There were a fixed number of worker threads. If too many users arrived, new
 requests would have to wait in line.

As a result, during peak usage the system became slow and less responsive. Response times would spike,
and the service could not easily scale to more users without adding more hardware.

Challenges in the Original System (Flask)

To address these issues, we migrated our code to FastAPI. FastAPI is a newer web framework that is built
for high performance. It can support asynchronous processing, but for this migration we kept our
implementation synchronous (like Flask) to ensure stability. In other words, we rewrote the service
endpoints in FastAPI but left the request-handling model the same. This meant minimal changes and a
smooth transition.

 Same APIs and data formats: We kept all API endpoints, request parameters, and response
 formats identical. Existing clients continued to work without any changes.

 Unchanged database logic: Our data models and database queries were reused. FastAPI worked
 with the existing database connections and query patterns without modification.

 Same server resources: We did not change the server or database capacity. The same CPU,
 memory, and deployment settings were used before and after.

Migration to FastAPI

Key points of our migration approach:

 Maintain stability: By running FastAPI in synchronous mode (the same as Flask), the internal
 behavior stayed consistent. The migration was essentially a swap of the web framework behind the
 scenes. Overall, the migration was mostly a behind-the-scenes upgrade: the core functionality and
 infrastructure remained the same, while the framework handling HTTP requests was replaced.

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

www.incedoinc.com

Why FastAPI Performs Better?

We ran performance tests to compare the old Flask system and the new FastAPI system under identical
conditions. We simulated multiple requests at the same time, ranging from tens to hundreds of
simultaneous requests. For each load scenario, we measured:

 Median response time (P50): the typical time to handle a request.

 Tail response time (P99): the time taken by the slowest 1% of requests, to capture worst-case delays.

Each scenario was tested multiple times to ensure consistency. We also monitored CPU and database
usage to see how resource efficiency has changed.

Performance Testing Methodology

 Maintain stability: By running FastAPI in synchronous mode (the same as Flask), the internal
 behavior stayed consistent. The migration was essentially a swap of the web framework behind the
 scenes. Overall, the migration was mostly a behind-the-scenes upgrade: the core functionality and
 infrastructure remained the same, while the framework handling HTTP requests was replaced.

Performance
Optimizations

Built on Starlette
and Uvicorn,
FastAPI uses

high-performanc
e ASGI servers for
efficient request

handling.

Faster
Parsing

FastAPI uses
Pydantic for

optimized data
validation,
reducing

overhead when
handling requests.

Automatic
Documentation

The framework
autogenerates

OpenAPI/Swagge
r docs, cutting
manual effort
and reducing
discrepancies.

Scalability
Path

FastAPI makes it
easy to move to
asynchronous

endpoints in the
future without a
major refactor.

Lower Latency

The internal architecture
handles concurrent

requests more efficiently,
maintaining lower

response times.

Cleaner Code

FastAPI encourages type
hints and modular
design, improving

readability and
debugging.

Async Compatibility

FastAPI supports async
endpoints without

architectural rewrites for
non-blocking I/0 needs.

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

www.incedoinc.com

The results showed clear benefits after migration. Under the same loads, the FastAPI-based service was
significantly faster. On average, response times were about 40% lower with FastAPI. For example, a
request that took 1.0 seconds with Flask might take only 0.6 seconds after migration. Some of the
heaviest operations became much faster in the order of 80–90% faster. For instance, a complex query
that once took over 6 seconds is now completed in under 1 second.

The database saw similar benefits: since queries were completed sooner, each database connection was
held for less time, reducing contention and effectively increasing throughput without changing
database settings. Overall, migration allowed the service to handle higher traffic more efficiently. The
following table summarizes the typical improvements observed:

These improvements mean the API can serve many more concurrent users with the same hardware, and
users experience faster response times in practice.

Performance Improvements

Metric Improvement

Median (typical) response time ~40% lower (faster)

Peak response time (99th percentile) ~30% lower (faster)

Throughput (requests/sec) ~25% higher

(Lower is better for latency; higher is better for throughput.)

Higher Median
Response Time

Longer Tail
Response Time

Higher
Resource Usage

Lower Median
Response Time

Shorter Tail
Response Time

Lower
Resource Usage

Made with

Flask Framework FastAPI Framework

FastAPI outperforms Flask in response time and resource efficiency

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

www.incedoinc.com

Business Impact

All gains were achieved with no additional hardware. In practice, this meant:

 Database efficiency: Faster request handling meant shorter database queries and fewer timeouts.
 The database handled the same workload with lower CPU load.

 Cost neutrality: We continued using the same servers and database capacity. There were no
 additional infrastructure costs.

 Improved user experience: Faster API responses make the system feel more responsive and
 reliable to end-users.

Conclusion

By modernizing the client’s API framework from Flask to FastAPI, Incedo helped the client realize
substantial performance improvements while keeping infrastructure costs flat. The approach preserved
client interfaces, minimized risk, and unlocked immediate operational and user-experience benefits —
proving that framework modernization is a high-impact, low-cost first step in platform optimization.

Made with

Achieving Gains Without Hardware

Database Efficiency

Cost Neutrality
Enhanced
system
Performance

Improved User
Experience

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

Ashish Agrawal

To learn more about how our solutions and platforms can drive
your success, please email us at inquiries@incedoinc.com

About the Author

Call To Action

Modern SaaS businesses demand APIs that scale effortlessly without compromising reliability. At Incedo,
we help organizations modernize applications and unlock measurable performance gains.

Looking to scale your SaaS APIs with confidence? Book a quick consultation with us—we’ll walk you
through tailored optimization strategies. Want to see how these techniques fit into your stack? Get in
touch, and we’ll share a deep-dive playbook for API performance at scale.

Connect with us today.

Ashish has two decades of experience working on cloud native saas
application for Cybersecurity domain. Prior to Incedo Ashish has
worked with companies like Motorola and Google. In his current role
Ashish is working on AI/ML initiatives at scale.

Kishore Singaraju

Kishore has expertise in backend development and scalable SaaS
solutions. Skilled in optimizing and securing high-performance
applications. Current focus: Python, Flask/FastAPI, Go, AWS,
Microservices, API performance, and automation.

Senior Director, Hi-Tech

Sr. Software Engineer, Hi-Tech

www.incedoinc.comWhitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs

https://www.incedoinc.com/

About Incedo

Incedo is a digital transformation expert empowering companies to
realize sustainable business impact from their digital investments.
Our integrated services and platforms that connect strategy and
execution, are built on the foundation of Design, AI, Data, and
strong engineering capabilities blended with our deep domain
expertise from digital natives.

With over 4,000 professionals in the US, Canada, Latin America, and
India and a large, diverse portfolio of long term, Fortune 500 and
fast-growing clients worldwide, we work across financial services,
telecom, product engineering, and life sciences industries.

Our Global Presence

India
Gurugram
Chennai
Pune
Bengaluru
Hyderabad

USA
Santa Clara
New Jersey
Dallas
Boston

Canada
Ontario

Mexico
Guadalajara

9+ 10+ 4k+
Fortune 500
Customers

Global
Locations

Employees
Globally

Win in the
Digital Age

©2025 Incedo Inc. All Right Reserved

www.incedoinc.comFollow us on:

S/
0

3/
10

/2
0

25

https://www.facebook.com/IncedoInc
https://www.linkedin.com/company/incedo-inc/
https://twitter.com/IncedoInc
https://www.instagram.com/incedoinc/
https://www.youtube.com/channel/UC6LjAUc6LyvLSwrEOMJaH_Q
https://www.incedoinc.com/

