‘‘‘‘‘
. _#

—, =

Incedo’s Playbook for
Pre-Scaling APIs /:

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/
https://www.incedoinc.com/

incedo

Performance optimization and API Scaling

At Incedo, we worked with one of our enterprise clients to modernize their real-time security-intelligence
API. Anticipating a substantial increase in data volumes, we proactively migrated the API service from
Flask to FastAPI framework, which is a modern, high-performance Python web framework that handles
requests more efficiently while keeping the entire infrastructure and API contracts unchanged. These

behind-the-scenes changes preserved compatibility for existing clients and required no additional
hardware.

The result: a roughly 40% reduction in typical response times, materially improved tail latency on heavy

gueries, and greater throughput — delivering faster, more reliable service to end users with no extra
infrastructure cost.

System Infrastructure

Resources Specification

Relational
Characteristic API Server Database NoSQL
Database
Server

CPU Cores 2 4 N/A
Memory (GB) 4 16 N/A
Temporary Storage 500 MB N/A N/A
Read Operations/ Second N/A N/A 1,000
Write Operations/Second N/A N/A 350

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

incedo

Challenges in the Original System (Flask)

The Flask framework processes incoming requests in a synchronous manner (one request at a time for
each worker). In practical terms, this meant each request had to wait for its turn. For example, if a request
needed to wait for a slow database query, the worker handling that request was tied up, and other
requests had to wait behind it. Under heavy loads with many requests at the same time, this caused
gueues and longer wait times.

Additionally, Flask added some processing overhead for every request. Each request involves parsing
input, running the business logic, and formatting the output. When traffic is light, this overhead is small,
but under heavy load it becomes noticeable. Together, these factors created performance bottlenecks
underload:

° Sequential processing: Each worker handled one request at a time, so a slow operation blocked
others.

° Request overhead: The framework’s own processing for each request added extra latency when
scaled up.

° Limited concurrency: There were a fixed number of worker threads. If too many users arrived, new
requests would have to wait in line.

As a result, during peak usage the system became slow and less responsive. Response times would spike,
and the service could not easily scale to more users without adding more hardware.

Migration to FastAPI

To address these issues, we migrated our code to FastAPI. FastAPI is a newer web framework that is built
for high performance. It can support asynchronous processing, but for this migration we kept our
implementation synchronous (like Flask) to ensure stability. In other words, we rewrote the service
endpoints in FastAPI but left the request-handling model the same. This meant minimal changes and a
smooth transition.

Key points of our migration approach:

° Same APIs and data formats: \We kept all APl endpoints, request parameters, and response
formats identical. Existing clients continued to work without any changes.

° Unchanged database logic: Our data models and database queries were reused. FastAPI worked
with the existing database connections and query patterns without modification.

° Same server resources: \We did not change the server or database capacity. The same CPU,

memory, and deployment settings were used before and after.

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

incedo

° Maintain stability: By running FastAPI in synchronous mode (the same as Flask), the internal
behavior stayed consistent. The migration was essentially a swap of the web framework behind the
scenes. Overall, the migration was mostly a behind-the-scenes upgrade: the core functionality and
infrastructure remained the same, while the framework handling HTTP requests was replaced.

Why FastAPI Performs Better?

Performance Faster Automatic Scalability
Optimizations Parsing Documentation Path
Built on Starlette FastAPI uses The framework FastAPl makes it
and Uvicorn, Pydantic for autogenerates easy to move to
FastAPI uses optimized data OpenAPIl/Swagge asynchronous
high-performanc validation, r docs, cutting endpoints in the
e ASCl servers for reducing manual effort future without a
efficient request overhead when and reducing major refactor.
handling. handling requests. discrepancies.
Lower Latency Cleaner Code Async Compatibility
The internal architecture FastAP| encourages type FastAPI supports async
handles concurrent hints and modular endpoints without
requests more efficiently, design, improving architectural rewrites for
maintaining lower readability and non-blocking I/0 needs.
response times. debugging.

Performance Testing Methodology

We ran performance tests to compare the old Flask system and the new FastAPI system under identical
conditions. We simulated multiple requests at the same time, ranging from tens to hundreds of
simultaneous requests. For each load scenario, we measured:

° Median response time (P50): the typical time to handle a request.

° Tail response time (P99): the time taken by the slowest 1% of requests, to capture worst-case delays.

Each scenario was tested multiple times to ensure consistency. We also monitored CPU and database
usage to see how resource efficiency has changed.

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

incedo

Performance Improvements

FastAPI outperforms Flask in response time and resource efficiency

- Higher Median 6 Lower Median
> Response Time @" Response Time
@ Longer Tail C@‘D Shorter Tail
Response Time Response Time
% Higher <F Lower
Resource Usage @ Resource Usage
[0\
Flask Framework FastAPI Framework

The results showed clear benefits after migration. Under the same loads, the FastAPI-based service was
significantly faster. On average, response times were about 40% lower with FastAPI. For example, a
request that took 1.0 seconds with Flask might take only 0.6 seconds after migration. Some of the
heaviest operations became much faster in the order of 80-90% faster. For instance, a complex query
that once took over 6 seconds is now completed in under 1second.

The database saw similar benefits: since queries were completed sooner, each database connection was
held for less time, reducing contention and effectively increasing throughput without changing
database settings. Overall, migration allowed the service to handle higher traffic more efficiently. The
following table summarizes the typical improvements observed:

Median (typical) response time ~40% lower (faster)
Peak response time (99th percentile) ~30% lower (faster)
Throughput (requests/sec) ~25% higher

(Lower is better for latency; higher is better for throughput.)

These improvements mean the API can serve many more concurrent users with the same hardware, and
users experience faster response times in practice.

Whitepaper: From Reactive to Proactive: Incedo’s Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

incedo

Business Impact

All gains were achieved with no additional hardware. In practice, this meant:

° Database efficiency: Faster request handling meant shorter database queries and fewer timeouts.
The database handled the same workload with lower CPU load.

[Cost neutrality: We continued using the same servers and database capacity. There were no
additional infrastructure costs.

° Improved user experience: Faster API responses make the system feel more responsive and
reliable to end-users.

Conclusion

By modernizing the client’'s API framework from Flask to FastAPI, Incedo helped the client realize
substantial performance improvements while keeping infrastructure costs flat. The approach preserved
client interfaces, minimized risk, and unlocked immediate operational and user-experience benefits —
proving that framework modernization is a high-impact, low-cost first step in platform optimization.

Achieving Gains Without Hardware

Database Efficiency (&=

Enhanced
: (=] @ N il
Cost Neutrality == > system
= = Performance
Improved User ﬁ
Experience ()
Whitepaper: From Reactive to Proactive: Incedo's Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

incedo
Call To Action

Modern Saa$S businesses demand APIs that scale effortlessly without compromising reliability. At Incedo,
we help organizations modernize applications and unlock measurable performance gains.

Looking to scale your SaaS APIs with confidence? Book a quick consultation with us—we'll walk you
through tailored optimization strategies. Want to see how these techniques fit into your stack? Get in
touch, and we'll share a deep-dive playbook for API performance at scale.

Connect with us today.

About the Author

Ashish Agrawal

Senior Director, Hi-Tech

Ashish has two decades of experience working on cloud native saas
application for Cybersecurity domain. Prior to Incedo Ashish has
worked with companies like Motorola and Google. In his current role
Ashish is working on Al/ML initiatives at scale.

Kishore Singaraju

Sr. Software Engineer, Hi-Tech

Kishore has expertise in backend development and scalable SaaS
solutions. Skilled in optimizing and securing high-performance
applications. Current focus: Python, Flask/FastAPI, Go, AWS,
Microservices, AP| performance, and automation.

To learn more about how our solutions and platforms can drive
your success, please email us at inquiries@incedoinc.com

Whitepaper: From Reactive to Proactive: Incedo's Playbook for Pre-Scaling APIs www.incedoinc.com

https://www.incedoinc.com/

iIncedo

About Incedo

Incedo is a digital transformation expert empowering companies to
realize sustainable business impact from their digital investments.
Our integrated services and platforms that connect strategy and
execution, are built on the foundation of Design, Al, Data, and
strong engineering capabilities blended with our deep domain
expertise from digital natives.

With over 4,000 professionals in the US, Canada, Latin America, and
India and a large, diverse portfolio of long term, Fortune 500 and
fast-growing clients worldwide, we work across financial services,
telecom, product engineering, and life sciences industries.

©2025 Incedo Inc. All Right Reserved

rorsons (F) () (X)

Win in the
Digital Age

O+

Fortune 500

Customers

10+

Global
Locations

Our Global Presence

India
Gurugram
Chennai
Pune
Bengaluru
Hyderabad

USA

Santa Clara
New Jersey
Dallas
Boston

4k+

Employees
Globally

Canada
Ontario

Mexico
Guadalajara

www.incedoinc.com

https://www.facebook.com/IncedoInc
https://www.linkedin.com/company/incedo-inc/
https://twitter.com/IncedoInc
https://www.instagram.com/incedoinc/
https://www.youtube.com/channel/UC6LjAUc6LyvLSwrEOMJaH_Q
https://www.incedoinc.com/

